Evolving Network Security in the Era of Network
Programmability

Mingming Chen
mzc796@psu.edu
The Pennsylvania State University
University Park, PA, USA

Abstract

Software-defined networking (SDN) is a centralized network ar-
chitecture enabling dynamic, programmable, and flexible network
management, which advances technologies like network security.
However, it also introduces new vulnerabilities due to the segre-
gation of data, control, and application planes, creating additional
attack surfaces and security gaps from the increased complexity of
programmability, flexibility, and scalability.

To empower network security with SDN, we develop a coordi-
nated sampling strategy using P4 programming for adaptive net-
work monitoring. Additionally, we uncover a flow entry-induced
topology poisoning attack to highlight security gaps from un-
planned module integration. Finally, we propose to fortify the SDN
control plane by generalizing SDN security policies and fuzzing it
to uncover unknown vulnerabilities.

CCS Concepts

« Security and privacy — Distributed systems security; Secu-
rity protocols; Intrusion detection systems; Software security
engineering; « Networks — Link-layer protocols; Network pro-
tocol design.

Keywords

SDN; P4; Coordinated Sampling; Budgeted Maximum Multi-Coverage;
Flow Entry-induced Topology Poisoning; Reinforcement Learning;
Misuse Testing; Fuzzing

ACM Reference Format:

Mingming Chen. 2024. Evolving Network Security in the Era of Network
Programmability. In Proceedings of the 2024 ACM SIGSAC Conference on
Computer and Communications Security (CCS "24), October 14—18, 2024, Salt
Lake City, UT, USA. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3658644.3690859

1 Introduction

Software-defined networking (SDN) is an architectural approach
to network management, that centralizes control plane functions
and decouples them from the data plane. This separation allows for
flexible, dynamic, and programmable network management, and
provides the following benefits:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690859

e SDN stimulates innovation: The centralized control plane
enables network virtualization (NV). Network function vir-
tualization (NFV) is also supported on SDN due to its flexible
network management which supports orchestration and au-
tomation, service function chains, and fast deployment.

e SDN accelerates technologies’ development: Cloud comput-
ing is well supported because SDN reduces network complex-
ity allowing cloud providers to configure network resources
quickly and dynamically even across multiple clouds. SDN
also provides fast and flexible data transmission to support
emerging distributed and federated learning.

e SDN enhances the performance of various scenarios: SDN
empowers traffic engineering to quickly adapt to changing
traffic patterns and service demands on data centers, wide
area networks, IoT, 5G, and vehicular networks.

o SDN facilitates machine learning (ML) on network applica-
tions: With the centralized control provided by SDN, ML has
been adopted to solve various network problems including
routing, load balancing, and intrusion detection.

In addition to the advantages SDN provides, network security is
generally enhanced by SDN because it provides fine-grained control
over traffic flows, enforcing security policies at the network level.
SDN not only assists in fast blocking/rerouting of known dangerous
traffic but also helps monitor traffic to find potentially harmful flows.
By collecting and analyzing traffic data, SDN supports various
attack detection methods. For example, network traffic monitoring
can be integrated into a single device (e.g. controller, switch, or a
dedicated network monitor) or distributed [5]. Distributed traffic
monitoring is practical because big data processing techniques are
available to process and analyze monitored traffic data in distributed
systems [5]. SDN stimulates many security applications such as
network monitoring and intrusion detection [13].

However, SDN also introduces additional attack surfaces due to
its decoupled, centralized architecture. Attack surfaces on the south-
bound interface (between the control plane and data plane) have
been extensively studied, with examples including race condition
attacks on insecure controller implementations [12] and topology
poisoning attacks initiated from malicious hosts or switches mis-
leading the controller with fabricated links around them [8]. Work
has also been done to enhance SDN northbound (between control
plane and application plane) security, focusing on preventing mali-
cious SDN applications from attacking northbound APIs [9], and
system-level vulnerabilities [2, 11].

Although much effort has been devoted to both the network se-
curity enabled by SDN and securing SDN, research gaps remain. On
one hand, the programmable data plane enabled by the P4 language
releases extensive power augmenting the programmable control

https://orcid.org/0000-0001-9595-770X
https://doi.org/10.1145/3658644.3690859
https://doi.org/10.1145/3658644.3690859
https://doi.org/10.1145/3658644.3690859

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

plane enabled by SDN architecture. On the other hand, stealthy
attacks can still evade existing detections, with no systematic ap-
proach to uncover these vulnerabilities. Besides, the east-westbound
interface (between controllers) has been largely overlooked even
though the controller cluster is essential in practice.

In this research statement, we exploit SDN programmability to
enhance network security and strive to protect SDN architectures
with multi-controllers against sophisticated attacks originating
from the control plane. First, we introduce the concept of coordi-
nated sampling in Section 2.1. This innovative approach involves
distributing the flow sampling workload across multiple switches
and coordinating the sampling of the same flows. In Section 2.2, we
present a flow entry-induced topology poisoning attack that can
be initiated from a malicious controller within a controller cluster
or a malicious SDN application. The flow entry-induced topology
poisoning causes all controllers to discover the deceptive topol-
ogy indefinitely by inserting normal flow entries. The deceptive
topology is computed to induce benign controllers to assist with
malicious activities, such as redirecting flows to an eavesdropping
point or bypassing monitoring points.

Ultimately, we strive to strengthen the security design of SDN
multi-controller architectures in Section 3. As many SDN security
research works have been conducted on the OpenFlow protocol, we
propose evaluating various SDN southbound protocols, particularly
the P4 runtime interface, which significantly impacts network se-
curity with its programmable data plane. As those protocols share
the characteristics of connecting SDN forwarding devices to the
SDN controllers, the vulnerabilities may also be similar, especially
for those initiated from the control plane. We aim to develop a se-
ries of SDN control plane security policies by which to securely
implement SDN controllers to avoid security flaws by design. Fur-
thermore, a fuzzing framework on the SDN controller may uncover
unknown stealthy vulnerabilities.

2 SDN: The Double-Edged Sword

SDN offers both opportunities and risks to security. Controllers’
topology view enables coordinated sampling, but a deceptive topol-
ogy can mislead controllers to divert flows from sampling points.

2.1 P4-enabled Coordinated Sampling

To address the challenge of supporting high-rate, flow-based sam-
pling within the resource constraints on each switch, a coordi-
nated sampling framework is developed [3]. We deploy multiple
P4-programmable switches along flows and coordinate packet sam-
pling among them. This framework enables dynamic sampling
point activation, deactivation, and runtime configuration, leverag-
ing P4’s programmability. Our P4 coordinated sampling algorithm
incurs negligible overhead on throughput and delay with substan-
tially low activation and deactivation time (around 0.05 and 0.01
seconds, respectively) as demonstrated on Arista 7170CD switches.

Given the substantial cost disparity between P4-programmable
switches and ordinary SDN switches, we formulated the P4 pro-
grammable switch placement problem as a budgeted maximum
multi-coverage problem to determine the optimal placement of a
budgeted number of P4-programmable switches to achieve max-
imum flow sampling coverage. This NP-complete integer linear

Mingming Chen

) Defense Focusing (D.9) DDoS
Attack Focusin)
g Overload > Lrash
(D.8) Flow Entry-Induced |Flow entry > SDN Control Plane [Switch join & leave
Topology Poisoning [Topology poisomin Security fhwediately > Non-pointer] (0:1) Race Condition
(D.2) Datastore

(D.7) Flow Entry
Conflict Semantic Gap Problem

Wrong buffer ID.
Wrong forwarding

(D.6) Buffered (D.5) Cross-App || (D.4) izati (D.3) based
Packet Hijacking Attack Induced Role Breach Topology Poisoning

Figure 1: Attacks on SDN Control Plane

Change hegder> Datastore\synchronization Pasket spoofing >
Wrong fopvarding = Role Breath Topology-poisoning

programming is pseudo-polynomial solvable on realistic topologies
as confirmed by theoretical proofs and experiments.

2.2 Flow Entry-induced Topology Poisoning

By identifying an overlooked vulnerability (CVE-2024-37018) in
which flow entries designed for traffic routing can influence topol-
ogy discovery results, we uncovered a new attack vector such that a
malicious application or a malicious controller in a multi-controller
architecture may craft poisonous flow entries, leading a legitimate
controller to independently discover a deceptive topology con-
ducive to malicious activities [4]. Leveraging this attack capability,
we designed a reinforcement learning (RL) model to compute a de-
ceptive topology with the same degree sequence and high graph
similarity to the real topology, tailored to specific goals. The attack
has been successfully tested against five trending open-source SDN
controllers and nine SDN topology discovery protocols including
OFDP.

3 Fortifying the SDN Control Plane

A systematic way to detect stealthy vulnerabilities on SDN is de-
sirable because existing defenses do not address vulnerabilities
that exist across modules. In Figure 1, we studied recent SDN at-
tacks on the control plane with an observation that they share
the character of exploring cross-module vulnerabilities to remain
stealthy. We plan to address this issue in two steps. First, we study
the misuse vulnerabilities on various SDN southbound interfaces,
and develop a series of protocol-independent security policies to
safeguard SDN controller implementations. Then, we aim to dis-
cover further unknown cross-module vulnerabilities by fuzzing
with learning techniques.

3.1 Misuse Testing on SDN Southbound

As the de-facto SDN southbound protocol, OpenFlow has been
well-studied by the research community. However, OpenFlow is
not equivalent to SDN. Both of the open source SDN controllers
OpenDaylight and ONOS support multiple southbound interfaces
including OpenFlow, P4, OVSDB, BGP, NetConf, etc [6, 7]. In prac-
tice, many companies use and customize various southbound in-
terfaces based on their SDN architecture [1]. Consequently, we
plan to expand the security analysis on SDN southbound inter-
faces focusing on P4 runtime, which is an interface used to control
P4-programmable switches [10].

We believe that misuse testing on the SDN southbound interfaces
can generate a series of security policies for controller implementa-
tions due to two observations: (1) The fundamental cause of many
existing attacks studied on OpenFlow-based SDN is the SDN archi-
tecture. OpenFlow is simply the carrier of the attacks. For example,

Evolving Network Security in the Era of Network Programmability

() Fuzzing test surface
(Fuzzing test object

[vutnerability

“A” Fuzzing test method

Fuzzing on
Controllers

Apps

amper packet’s header
App B processes it

Follower contye
updates gafastore

Synchronization-
Induced Role Breach

Switch Identity
fing/Load

Cross-App Attack
balance attack
Wrong jpformation

Race
Condition
Semantic Gap

Switch jgins and leave e
immedjétely

Flow-mod

s ey
pr Flow pnt?
chang.num/mLLDPFovwardmg atgh buffer ID
Flow Entry Topology
Conflict Poisoning

LLDP packet relay

| Packet-out

Switch join and leaves

Buffered Packet frequently

Hijacking

Floodto

ering contrplplade | Multipart-reply Datastore

m|

Packet-in

[Hosts] [Switches J

Figure 2: Fuzzing Prototype on SDN

the (D.1) race condition attack is essentially a classic TOCTTOU
(Time of Check to Time of Use) attack on file systems, exploring
the insecure controller implementation which is orthogonal to the
southbound protocol. Other cases include the (D.9) DDoS attack,
(D.2) Datastore Semantic Gap problem, and (D.4) Synchronization-
induced role breach. (2) SDN Southbound interfaces other than
OpenFlow tend to adopt OpenFlow methods to achieve SDN func-
tionalities. Because OpenFlow is initiated to enable the SDN archi-
tecture, its features fit the SDN architecture naturally. For example,
the first physical network running P4 Runtime at the SDN NFV
World Congress uses the de-facto OpenFlow discovery protocol
(OFDP) to discover links [10]. Consequently, the (D.8) Flow entry-
induced topology poisoning attacks can also attack such an SDN
architecture composed of P4-programmable switches. Other cases
may include (D.3) spoof/relay-based topology poisoning, (D.7) Flow
entry conflict, (D.5) Cross-App Attacks, and (D.6) Buffered Packet
Hijacking.

3.2 Exploring Unknown SDN Vulnerabilities

Ultimately, we plan to use fuzzing techniques to discover unknown
vulnerabilities that enable sophisticated attacks originating from
the SDN control plane. As most of the stealthy attacks shown in
Figure 1 originate from the design flaws across modules, we target
the cross-module vulnerabilities and fuzz the related configuration
messages to explore potential vulnerabilities. In Figure 2, we de-
pict a fuzzing framework for an SDN architecture with OpenFlow
protocol, inspired by Figure 1. The fuzzing framework will extend
to the protocol-independent P4 runtime API and be generalized to
any southbound interfaces based on the result of Section 3.1.

The architecture operates in dynamic SDN scenarios with appli-
cation, control, and data planes. We focus on fuzzing the control
plane with randomized inputs to configure the network. The invari-
ant is that the network behavior must follow legitimate instructions.
The fuzzing oracle observes runtime network behaviors and com-
pares them with the invariant to discover vulnerabilities.

There are several challenges of fuzzing on the SDN control plane.
First, a protocol-independent fuzzing framework needs a compre-
hensive analysis of various SDN southbound protocols to provide
fuzzing guidance. Second, the large number of southbound mes-
sages makes it challenging to fuzz efficiently. Third, the dynamic
analysis depends on various scenarios which are unknown.

To tackle those challenges, we envision reinforcement learning
and feedback on the network state may help with efficiency. The

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

protocol-independent feature depends on the result of Section 3.1
to provide generalized guidance for fuzzing.

4 Conclusion

Since SDN technology has been widely implemented in the industry,
building a secure and robust SDN control plane is crucial to prevent
evolving cyberattacks. A systematic framework for testing SDN
controllers’ security is essential to release their full potential.

5 Acknowledgements

I thank my advisors, Thomas La Porta and Trent Jaeger, for their
invaluable advice and persistent support. I also thank my collab-
orators, Teryl Taylor, Frederico Araujo, and Benjamin E. Ujcich,
for their constructive feedback and expert guidance. This research
was sponsored by the U.S. Army Combat Capabilities Development
Command Army Research Laboratory and was accomplished under
Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber
Security CRA). The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of
the Combat Capabilities Development Command Army Research
Laboratory of the U.S. government. The U.S. government is autho-
rized to reproduce and distribute reprints for government purposes
notwithstanding any copyright notation here on.

References

[1] Engineering at Meta. Facebook open switching system (“fboss”) and wedge in the
open. https://engineering.fb.com/2015/03/10/data- center-engineering/facebook-
open-switching- system-fboss-and-wedge-in-the-open/, 2015-03-05. Accessed
on 2024-07-09.

[2] Jiahao Cao, Renjie Xie, Kun Sun, Qi Li, Guofei Gu, and Mingwei Xu. When match
fields do not need to match: Buffered packets hijacking in sdn. In Proc. of the
Network and Distributed System Security Symposium (NDSS’20), 2020.

[3] Mingming Chen, Thomas La Porta, Trent Jaeger, and Srikanth Krishnamurthy.
Lightweight coordinated sampling for dynamic flows under budget constraints.
In 2024 33rd International Conference on Computer Communications and Networks
(ICCCN), pages 1-9. IEEE, 2024.

[4] Mingming Chen, Thomas La Porta, Teryl Taylor, Frederico Araujo, and Trent
Jaeger. Manipulating openflow link discovery packet forwarding for topology
poisoning. https://doi.org/10.48550/arXiv.2408.16940, 2024.

[5] Alessandro D’Alconzo, Idilio Drago, Andrea Morichetta, Marco Mellia, and Pedro
Casas. A survey on big data for network traffic monitoring and analysis. IEEE
Transactions on Network and Service Management, 16(3):800-813, 2019.

[6] Linux Foundation. Opendaylight techniqual overview. http://archivel5.
opendaylight.org/project/technical-overview, 2015. Accessed on 2024-07-09.

[7] Open Networking Foundation. Onos feature. https://opennetworking.org/wp-
content/uploads/2019/12/ONOS-Features_v1.pdf, 2019. Accessed on 2024-07-09.

[8] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu. Poisoning network

visibility in software-defined networks: New attacks and countermeasures. In

Ndss, volume 15, pages 8-11, 2015.

Tao Hu, Zhen Zhang, Peng Yi, Dong Liang, Ziyong Li, Quan Ren, Yuxiang Hu,

and Julong Lan. Seapp: A secure application management framework based on

rest api access control in sdn-enabled cloud environment. Journal of Parallel and

Distributed Computing, 147:108-123, 2021.

[10] Nick McKeown. P4 runtime - putting the control plane in charge of the for-

warding plane. https://opennetworking.org/news-and-events/blog/p4-runtime-

putting-the-control-plane-in-charge-of-the-forwarding-plane/, 2017-12-04. Ac-

cessed on 2024-07-09.

Benjamin E Ujcich, Samuel Jero, Richard Skowyra, Adam Bates, William H

Sanders, and Hamed Okhravi. Causal analysis for {Software-Defined} network-

ing attacks. In 30th USENIX Security Symposium (USENIX Security 21), pages

3183-3200, 2021.

Lei Xu, Jeff Huang, Sungmin Hong, Jialong Zhang, and Guofei Gu. Attacking the

brain: Races in the {SDN} control plane. In 26th USENIX Security Symposium

(USENIX Security 17), pages 451-468, 2017.

Huancheng Zhou and Guofei Gu. Cerberus: Enabling efficient and effective in-

network monitoring on programmable switches. In 2024 IEEE Symposium on

=

—_
—_

[12

(13

https://engineering.fb.com/2015/03/10/data-center-engineering/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://engineering.fb.com/2015/03/10/data-center-engineering/facebook-open-switching-system-fboss-and-wedge-in-the-open/
https://doi.org/10.48550/arXiv.2408.16940
http://archive15.opendaylight.org/project/technical-overview
http://archive15.opendaylight.org/project/technical-overview
https://opennetworking.org/wp-content/uploads/2019/12/ONOS-Features_v1.pdf
https://opennetworking.org/wp-content/uploads/2019/12/ONOS-Features_v1.pdf
https://opennetworking.org/news-and-events/blog/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane/
https://opennetworking.org/news-and-events/blog/p4-runtime-putting-the-control-plane-in-charge-of-the-forwarding-plane/

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA Mingming Chen

Security and Privacy (SP), pages 16-16. IEEE Computer Society, 2023.

	Abstract
	1 Introduction
	2 SDN: The Double-Edged Sword
	2.1 P4-enabled Coordinated Sampling
	2.2 Flow Entry-induced Topology Poisoning

	3 Fortifying the SDN Control Plane
	3.1 Misuse Testing on SDN Southbound
	3.2 Exploring Unknown SDN Vulnerabilities

	4 Conclusion
	5 Acknowledgements
	References

