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Abstract

Software-defined networking (SDN) is a centralized, dynamic, and
programmable network management technology that enables flexi-
ble traffic control and scalability. SDN facilitates network adminis-
tration through a centralized view of the underlying physical topol-
ogy; tampering with this topology view can result in catastrophic
damage to network management and security. To underscore this
issue, we introduceMarionette, a new topology poisoning tech-
nique that manipulates OpenFlow link discovery packet forwarding
to alter topology information. Our approach exposes an overlooked
yet widespread attack vector, distinguishing itself from traditional
link fabrication attacks that tamper, spoof, or relay discovery pack-
ets at the data plane. Unlike localized attacks observed in existing
methods, our technique introduces a globalized topology poisoning
attack that leverages control privileges.Marionette implements
a reinforcement learning algorithm to compute a poisoned topology
target, and injects flow entries to achieve a long-lived stealthy at-
tack. Our evaluation shows thatMarionette successfully attacks
five open-source controllers and nine OpenFlow-based discovery
protocols.Marionette overcomes the state-of-the-art topology
poisoning defenses, showcasing a new class of topology poisoning
that initiates on the control plane. This security vulnerability was
ethically disclosed to OpenDaylight, and CVE-2024-37018 has been
assigned.
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1 Introduction

Software-defined networking (SDN) is a flexible network architec-
ture that offers centralized control and management of a network,
in contrast to traditional data networks. SDN enables a controller to
manage the network centrally through one of several protocols (e.g.,
OpenFlow [63]) and decouples control from the switches. A major
advantage of SDN is that it provides a real-time view of the entire
network, which allows for flexible traffic management. This serves
as the foundation for many services, including cloud computing,
traffic engineering, and network monitoring.

Despite its many advantages, SDN’s centralized architecture
suffers from inherent limitations related to scalability and fault-
tolerance [4, 73]. To solve these issues, multi-controller architec-
tures were introduced [30, 73] to reduce communication latency
between controllers and switches and balance the load across mul-
tiple controllers. Furthermore, fault-tolerant controller clustering
enables rapid recovery of the control plane to mitigate the im-
pact of a single point of failure or attacks on a single controller.
However, multi-controller architectures also introduce attack vec-
tors [2, 38, 43, 58] spanning the east-westbound interface (between
controllers) and north-southbound interface (between controllers
and applications/switches).

Specifically, while topology poisoning attacks originating from
the data plane have been well-studied [8, 29, 49], the control plane
poses challenges for creating sophisticated, long-lasting topology
poisoning attacks. For example, a naïve approach, in which a mali-
cious controller shares incorrect information with peer controllers
to poison the topology, is not effective [35] because leader con-
trollers periodically (e.g., every 100 milliseconds [68]) re-discover
the topology directly from the network, independently [11, 23, 68].
Moreover, the assignment of the leader role is dynamic [30, 62, 73],
rendering attacks that rely on a static leader ineffective. Similarly,
attacks that directly manipulate traffic forwarding through the in-
jection of malicious flow entries are easily detectable [39, 44, 56, 59].
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A critical and previously overlooked vulnerability in modern
SDN link discovery occurs when the flow entries designed for traffic
routing are used to impact link discovery. The OpenFlow Discovery
Protocol (OFDP), the de-facto SDN discovery protocol, enables con-
trollers to perform link discovery between any pair of neighboring
switches; however, maliciously constructed (i.e., poisonous1 ) flow
entries that manipulate the Link Layer Discovery Protocol (LLDP)2
packet forwarding may cause controllers to discover incorrect links
and miss real ones. Further, we find that both the OpenDaylight
and ONOS controller clusters3 allow controllers in any role in a
multi-controller architecture to introduce these poisonous flow en-
tries due to an insecure multi-controller implementation. Malicious
applications on an SDN controller can also exploit this vulnerability.

To underscore the severity of this security vulnerability, we
introduceMarionette, a persistent, stealthy, precise, and global-

ized topology poisoning attack that uses poisonous OpenFlow [63]
flow entries to induce controllers to independently discover a poi-
soned topology using standard discovery protocols. In contrast to
techniques that ephemerally mislead controllers with false infor-
mation, our approach steers benign controllers to independently
discover a false, poisoned topology and accept it indefinitely, with-
out flow interruption. Modern topology discovery protocols infer
links between switches based on the start and end points of the
path traversed by an LLDP packet.Marionette manipulates the
traversal’s endpoint to fabricate links, circumventing current state-
of-the-art detection mechanisms. This enables Marionette to
manipulate any discoverable links in the network irrespective of
their location. As a result, it can initiate a global attack by comput-
ing a target poisoned topology based on the real topology.

Marionette works with standard OpenFlow protocols, attack-
ing OpenFlow-based SDN topology discovery protocols that flood
or broadcast discovery packets to discover links (§7.1). The attack
first learns the current network topology and forwarding policy.
It then uses reinforcement learning (RL) [57] to learn a deceptive
topology that will achieve an attack goal (e.g., evading a monitor,
attracting traffic to an eavesdropping switch). When building the
RL model, constraints are imposed to evade existing defenses [23]
while limiting the differences between the poisoned and real topolo-
gies (§6.1). Once a target topology is determined,Marionette
automatically derives the required poisonous flow entries and sends
them to the appropriate switches concealed as normal flow entries
(§5.1, §5.2). Finally, while gaps in routes—introduced by differences
between the real and fabricated topologies—can be fixed through re-
active forwarding [63], we use a stealthier approach to patch these
differences via additional flow entries that minimize suspicious
packet-in packets sent to the benign controller (§5.3). Performing
these three functions concurrently in a real network is not trivial.
The end-to-end attack strategy is discussed in §6.

Marionette is robust against encryption-based defenses [3,
7, 11, 29] because it does not rely on packet spoofing or fabrica-
tion. Software rootkit defenses [56] are also ineffective since the
attack only relies on normal controller functionality. Moreover, the

1 We use “poisonous" as the adjective of flow entries that poison the topology. Conse-
quently, such topology is called a “poisoned topology".
2 A link layer protocol used by IEEE 802 network devices to learn reachability and
connection endpoint information from adjacent devices [22].
3 The only two Open-Source controller projects with clustering implementation.

Table 1: Control Plane Vulnerabilities

Vulnerabilities Security issues | CVEs

Malicious Controller [35],[44],[54],[74],[3],[41]

Controller Impersonation [43],[38],[26][64], [20]

Unauthenticated Access [9],[18],[43]

Controller Vulnerabilities CVE-2018-1000614, CVE-2023-30093, CVE-2017-
1000081, CVE-2018-1132, CVE-2017-1000406

Malicious Application [6],[28],[66],[74],[67],[56],[43],[16]

Northbound API abuse [31],[65]

poisonous flow entries generated by Marionette escape flow
rule examinations [36, 53] and network policy checking [34] (§7.5).
Marionette overcomes scalability issues by computing its decep-
tive topologies offline and performing infrequent topology changes.

To validate the practicality of our approach, we implemented
Marionette attacks against nine OpenFlow-based discovery pro-
tocols and five SDN controllers, including attacks against Open-
Daylight and ONOS clusters. We also used Marionette’s RL
algorithm to compute deceptive topologies for two network topolo-
gies, fat tree [40], which is widely used in enterprise networks, and
Chinanet [50], a backbone topology. Our experiments show that
Marionette generates a poisoned topology that is 92% similar
to the original topology while attracting more than 60% additional
flows to the eavesdropping point on a 36-node fat tree topology. We
analyzed current state-of-the-art defenses againstMarionette,
revealing that all are ineffective against our attack. We have ethi-
cally disclosed our attack details to the OpenDayLight community,
which has acknowledged the vulnerability.

Our contributions can be summarized as follows:
• We introduce a novel method for topology poisoning initiated
from the control plane which generates poisonous flow entries
that manipulate link discovery packets’ forwarding to precisely
fabricate links toward a specific attack goal.
• We design a reinforcement learning algorithm that automati-
cally computes network topologies that satisfy attack objectives
(e.g., flow routing through an attacker-controlled node) and
constraints (e.g., the deceptive topology has a certain graph
similarity with the real topology).
• We successfully deployedMarionette attacks on both ONOS
and OpenDaylight clusters, and five open-source controllers,
while systematically evading existing defenses. We also show
that Marionette can attack nine different SDN discovery
protocols, and evaluate our RL model on two real topologies.

2 Overview

SDN provides dynamic, flexible, and programmable traffic manage-
ment by decoupling the control plane from the data plane. Unlike
legacy networks running a distributed routing algorithm on each
switch, SDN employs a centralized controller to gather network
information and orchestrate actions across switches. To enhance
fault tolerance and scalability of the single-controller architecture, a
multi-controller architecture was developed [30, 73]. However, the
increased complexity and multiple interfaces expose many types of
vulnerabilities, especially on the control plane, as listed in Table 1.

A malicious controller in a cluster or malicious application in the
SDN platform can jeopardize the network by proactively injecting
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Figure 1: Motivating Example

malicious flow entries. As a result, defenses have been developed to
detect malicious flow entries that cause routing attacks [6, 36, 53];
however, a heretofore overlooked attack inserts poisonous flow
entries that manipulate link discovery packet forwarding to poison
the topology view of benign controllers, evading existing defenses.
Motivating Example. Figure 1 exemplifies this attack. The left-
hand side shows the real topology, while the right-hand side (i.e.,
the dotted circle) is the deceptive topology as it appears to the benign
controller. Before the attack, the flow 𝑓1 : (𝑠𝑟𝑐 : 𝐻1, 𝑑𝑠𝑡 : 𝐻2) was
routed through the shortest path of green dotted path 𝐻1 → 𝐴→
𝐷 → 𝐸 → 𝐻2 on the real topology. The deceptive link of 𝐴 → 𝐵

on the deceptive topology in Figure 1 can be fabricated by inserting
a flow entry at switch 𝐶 that instructs 𝐿𝐿𝐷𝑃𝐴2 to be forwarded to
Port 2 instead of feeding it back to the controller. Consequently, the
benign controller thinks the shortest path of 𝑓1 is the red dotted
path 𝐻1 → 𝐴 → 𝐵 → 𝐸 → 𝐻2 based on the deceptive topology.
The absence of 𝐶 on the fabricated link of 𝐴 → 𝐵 allows 𝐶 to
eavesdrop on 𝑓1 without being noticed by the benign controller
(red dotted path on the real topology). The details of precise link
manipulation are in §5. Note that the deceptive topology in this
work always has the same degree sequence as the real topology to
remain stealthy. We show an implementation of this attack against
the ONOS controller in §7.2 and §7.3.

2.1 OpenFlow and OpenFlow Link Discovery

OpenFlow [63] is a standard SDN protocol that allows a controller
to gather information and instruct switches on how to route in-
coming packets by sending them flow entries4. When a packet
arrives at a switch, the switch checks its flow table to determine
whether there is a matching flow entry to determine where to for-
ward the packet. If yes, the switch forwards the packet accordingly.
Otherwise, it encapsulates the packet in a packet-in message and
sends it to the controller due to a table-miss flow entry. A table-
miss flow entry is the default flow entry instructing the unmatched
packet to be sent to the controller. Once the controller determines
the route, it sends the packet back to the switch encapsulated in
a packet-out message and installs necessary flow entry5 in the
switch using flow-mod messages. The controller repeats this pro-
cess until the packet arrives at its destination. This process is called
reactive forwarding. The controller can also configure flow entries
beforehand spontaneously, which is called proactive forwarding.
4The flow entry has a match field and a set of actions to apply to the matched packets.
Entry types for matching include source/destination MAC and IP addresses, VLAN ID,
input port, etc. Instructions associated with each entry may contain actions instructing
packet forwarding, packet modification, group table processing, etc.
5When the controller fails to determine an output at a switch (because the destination
host is unknown or the switch is not on the computed route), the controller sends the
packet back to the switch and instructs it to flood this packet through all its ports.

Figure 2: OFDP illustration Figure 3: Threat Model

To maintain correct centralized control of modern, dynamically
changing networks, controllers (re-)discover the network topol-
ogy frequently (e.g., commonly every 100 ms), via the OpenFlow
Discovery Protocol (OFDP). In Figure 2, we illustrate a single in-
stance of OFDP discovering a unidirectional link from A to B. The
OFDP process is initiated in step ➀ when the controller sends a
packet-out message encapsulating an LLDP packet, which we de-
noted as 𝐿𝐿𝐷𝑃𝐴2, to switch A and instructs A to forward the LLDP
to port 2. In step ➁, switch A receives the packet-out message,
decapsulates the OpenFlow header, and sends the 𝐿𝐿𝐷𝑃𝐴2 packet
to port 2; switch B receives the 𝐿𝐿𝐷𝑃𝐴2 packet sent from (A, Port:
2) (➂). The LLDP packet matches the pre-configured table-miss
/LLDP flow entry6 in switch B which instructs the switch to send
it to the controller using a packet-in message. Finally, in step ➃,
the controller receives the packet-in message. It learns that the
𝐿𝐿𝐷𝑃𝐴2 packet was sent from (A, Port:2) by checking the 𝐿𝐿𝐷𝑃𝐴2
payload, and received by (B, Port:1) by checking the packet-in
payload. The controller writes a unidirectional link (A, Port:2)→
(B, Port:1) to its data store. Hereafter, we use the notation 𝐴2→ 1𝐵
for simplicity.

2.2 Marionette

Marionette is a new topology poisoning attack that uses poi-
sonous OpenFlow [63] flow entries to manipulate link discovery
packet forwarding to induce benign controllers to discover a poi-
soned topology independently. Our key insight is that SDN discov-
ery protocols such as the OpenFlow Discovery Protocol (OFDP)
rely on a controller flooding the network with discovery packets
to infer the topology. These packets are fed back to the controller
from switches by either a table-miss or an LLDP flow entry. The
controller knows the start and end points of a discovery packet’s
traversal; however, it cannot discern any intermediate points along
the feedback loop, because that information is not stored in the
LLDP packets. This creates an opportunity for a rogue controller to
stealthily manipulate the path taken by the discovery packets which
in turn manipulates the links that are discovered by the controller.

The attack requires two types of flow entries to be installed in
a switch. The first type, which we call poisonous flow entries, is
used to misdirect topology discovery packets so that legitimate
controllers learn the poisoned topology independently. The second
type, which we call gap-patching flow entries, is used to repair the
updated paths (based on the poisoned topology) that are disjoint in

6match: “ether-type:0x88cc", where “0x88cc" is LLDP packet type
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Table 2: Related Threats and State-of-the-art Defences

Attack Sur-

face

Attack Methodology Impact Defense

Malicious
Host(s)/
Switch

(A.1) Link Fabrication: Fabricate a
deceptive link A1 -> B2 on the
controller’s view.
Methods: 1. Relay LLDP packet from
A1(switch A port 1) to B2 by:
(1) malicious hosts [29, 60]
(2) malicious switch [8]

("Match: ether-type: 0x88cc,
inport:1 Action: 2" [5])

2. Fabricate LLDP packet with "src: A1"
and send it to B2 by:
(3) malicious hosts [29, 60]
(4) malicious switch [12]

Localized
Persistent

(D.1) SPV: With benign controller assumption, it sends a probe to go through the target link. If the
link is fabricated, the probe forwarding through A1 will be dropped or fed back to the controller by
a switch port other than B2 [8].

(D.2) Latency-based Detection: A link is considered fabricated if its latency is greater than a threshold
value [5, 27, 32, 61].

(D.3) Sphinx: With benign controller assumption, it builds the flow graph incrementally from Flow-
mod OF-message, comparing it with actual flow routings using switch metadata. If a discrepancy is
found, fabricating links are on the differing points [23].

(D.4) Port-based Detection: If an active port connects more than one link, either switch-host link or
switch-switch link, one of the switch-switch links is fabricated [12, 23].

(D.5) TopoGuard(+): If an active port connects with both host and switch, the link connects switch
is fabricated; Authenticating LLDP packets to prevent LLDP packet fabrication [29, 60].

Malicious
Application/
Controller in
Cluster

(A.2) Wrong Information Sharing:

Malicious controller shares wrong
(topology) information in the
controller cluster to cause topology
poisoning [35, 43, 56].

Globalized
Ephemeral

(D.6) Dynamic Cluster: Leader controller is
dynamically assigned [30, 62, 73] and it peri-
odically (e.g., every 100 milliseconds [68]) re-
discovers the topology from the network inde-
pendently [11, 23, 68].

(D.7)Monitoring-based
Detection:
Defenses [56, 66, 67, 74]
audit the controller’s or
applications’ behavior to
detect anomalies by
backup controller,
information flow model,
root causes, or
comparison with real
network state.

(D.8) Voting-based
Defense: Fleet [44],
topotrust [3], and
Mcad-SA[54] depend
on the majority to
vote out a malicious
controller based on
odd behaviors around
reactive forwarding
or spoofing.

(A.3) Malicious Routing: Insert
malicious flow entries to conflict with
existing traffic-routing flow entries to
detriment flow routings, network
policy, or other
applications [6, 28, 34, 36, 53, 66].

Globalized
Persistent

(D.9) Flow Rule Checker: FlowChecker [6], Ver-
iflow [36], Netplumber [34], Eirene [28], and
FortNOX [53] build the flow graph/logic with
header information (e.g.src/dst IPs/ports) of flow
entries to detect flow rule conflicts and policy
violations.

Marionette: Insert poisonous flow
entries to bypass table-miss/LLDP flow
entries to poison the topology.

Globalized
Persistent

No existing defense against Marionette because: existing defenses have overlooked the
vulnerability where regular flow entries conflict with table-miss and LLDP flow entries (which is
called priority-bypassing attack more specifically) to manipulate link discovery results, as detailed
in Table 3.

reality but are seen as connected by the legitimate controllers, so
that packets on these paths can still be routed end-to-end.

To illustrate, using compact notation, given a segment𝐴2−1𝐶2−
1𝐵 in the real topology in our motivating example, our goal is to
make (𝐴, 𝑃𝑜𝑟𝑡 : 2) appear to connect to (𝐵, 𝑃𝑜𝑟𝑡 : 1) directly as
𝐴2 − 1𝐵. Note that since we are removing a link from the topology
to connect 𝐴 directly to 𝐵, we need to add additional links back to
the idle ports to go undetected. As a result, the links 𝐴1 − 2𝐶 and
𝐶1 − 1𝐷 are also fabricated. The example assumes LLDP packets
are used in the topology discovery protocol, but our attack works
on most existing OpenFlow-based discovery packets without any
required changes.

3 Related Work

Table 2 summarizes previously developed topology poisoning at-
tacks and the defenses that have been proposed to defend against
them. Table 3 highlights the features inMarionette that allow it
to evade these defenses. We refer to the table entries in our discus-
sion below. Prior attacks can be categorized as those that fabricate
links (A.1), share false topologies (A.2), and maliciously route pack-
ets (A.3). Our attack is unique in that it exploits a latent vulnerability
that has been overlooked by prior attacks and defenses: flow entries

intended for traffic forwarding can impact link discovery results.
Link Fabrication Attacks (A.1). The first set of attacks originate
from malicious hosts or switches and are typically localized in their
network impact. Research in this area focuses on link fabrication
attacks [29][60][8] and includes two key techniques: (1) Fabricating
LLDP packets; (2) Relaying LLDP packets. Sungmin, et al. [29] and
Richard, et al. [60] show that a malicious host connecting with

a switch can fabricate a link by analyzing the received discovery
packets, fabricating a discovery packet, and sending it back to the
switch. Another approach to link fabrication is relaying legitimate
LLDP packets to a wrong endpoint using malicious hosts [60] or
switches [8].Marionette is different from existingworks because
it is initiated from the control plane and does not need to spoof or
fabricate packets. By contrast, Marionette does not fabricate
or relay LLDP packets, but uses poisonous flow entries to deceive
controllers in a cluster into accepting a new poisoned topology. Our
attack is global, persistent, and stealthy.
Link Fabrication Defenses (D.1-5). TopoGuard [29] and To-
poGuard+ (D.5) [60] record and verify the identity of connected
switches to mitigate host-involved link fabrication attacks. These
methods do not detect Marionette because it is not launched
from the edge of the network. Defenses that use port-based detec-
tion (D.4) [12, 23] verify that active ports are connected to only
one other active port. We maintain this property by designing the
poisonous topology with the same degree sequence as the real
topology. Latency-based detection methods (D.2) [32, 61] analyze
link latencies and consider a link fabricated if its latency is greater
than a threshold value. This method suffers from a high error rate
due to link latency fluctuation.Marionette only uses switches
that have undiscernible incremental latency, especially when the
network latency is high [5, 27], to relay LLDP packets.

Sphinx (D.3) [23] assumes controllers are benign and trusts
them to construct a flow graph database to detect abnormal flows.
Similarly, stealthy probe-based verification SPV (D.1) [8] trusts the
control plane and uses it to probe target links. As a result, it cannot
detect our attack as Marionette is initiated from the control
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Table 3: Marionette Features and Evasion of Existing Detection Mechanisms

Feature Related Defense Evading Detection Mechanism

Fabricates links without spoofing, hiding,
or fabricating packets

(D.5) TopoGuard(+), (D.7)

Monitoring-based Detection
(D.5) detects fabricated packets, and (D.7) identifies spoofing and hiding behaviors. Mari-

onette does not engage in any such activities.

Explore the vulnerability that flow entries
can manipulate link discovery precisely

(D.7)Monitoring-based Detection (D.7) analyzes control plane events to identify suspicious behaviors but overlooks the
vulnerability explored by Marionette that flow entries meant for traffic routing

can manipulate link discovery.

Originates at malicious con-
troller/application

(D.1) SPV, (D.3) Sphinx Marionette is initiated from control plane that is trusted by (D.1)(D.3) to detect
anomalies initiated from data plane.

Utilizes flow entries matching MAC ad-
dress (with in-port) with higher priority
to bypass table-miss/LLDP flow entries

(D.9) Flow Rule Checker (D.9) examines flow entry conflict with existing flow entries that routes data plane traffic.
However, (D.9) fails to detect Marionette because the poisonous flow entries by

Marionette conflict with table-miss/LLDP flow entries, which are not monitored

by (D.9).

Proactively poisons topology with
stealthy flow entries

(D.8) Voting-based Defense Marionette leaves benign controllers in (D.8) to incorrectly process reactive

forwarding independently due to altered topology.

Instructs switches to relay link discovery
packets

(D.2) Latency-based Detection (D.2) has a high rate of misjudgment, which may fail to detect the low-latency switch-

based relay of Marionette very often [5, 27].
Maintains the same degree sequence and
high graph similarity

(D.4) Port-based Detection, (D.5) To-
poGuard(+)

Preserved degree sequence by Marionette ensures each active port connects to only
one link, making (D.4)(D.5) ineffective in detection.

Any controller in cluster discovers decep-
tive topology independently

(D.6) Dynamic Cluster Marionette allows any dynamically assigned leader controllers in (D.6) to consis-

tently discover the same deceptive topology.

plane, which both solutions trust, and is able to access the probe
information to proactively patch gaps.
Malicious Controller/Application Attacks (A.2-3). The second
set of attacks in the literature assumes a malicious controller in a
cluster, or a rogue SDN application. As a result, these attacks affect
the network globally. Some malicious controllers will share incor-
rect topology information [35, 43, 56] with the other controllers in
the cluster. While these attacks wreak havoc, they do not last long
because controllers periodically re-discover the topology such that
the wrong topology is replaced with the correct one. Another class
of attacks inserts malicious flow entries that impact the routing of
network traffic [6, 28, 34, 36, 53, 66]. Such attacks are persistent;
however, there are many systems available to detect them.
MaliciousController/ApplicationDefenses (D.6-9). Monitoring-
based detections [56, 59, 74] rely on tracking the controller/ appli-
cation behaviors by the backup controller or intercepted OpenFlow
messages and comparing them with real network state to detect
anomalies. SDN-RDCD (D.7) [74] detects real-time tampering-based
attacks from malicious network elements (switches and controllers)
by utilizing a backup controller to audit network events to detect in-
consistency among them. TopoTrust (D.8) [3] detects any spoofing
and tampering-based attacks with a blockchain technique.Mari-
onette does not cause the type of inconsistencies these systems
detect because it does not use tampering, spoofing, or hiding.

More recently, ProvSDN [66] tracks the information flow on the
controller to capture cross-app attacks that cause unwanted flow
entries to be installed by other applications. PicoSDN enhances
ProvSDN by adding a data plane model to achieve fine-grained
analysis. Nevertheless, these systems overlook the vulnerability
explored byMarionette: flow entries meant for traffic routing
can also influence topology discovery, thus failing to establish a
causal connection and leavingMarionette undetected.

VeriFlow [36], FlowChecker [6], and FortNOX [53] (D.9) depend
on exploring the source/destination address or port information of
existing traffic-routing flow entries to construct forwarding graphs

to detect flow entry conflicts. However, the table-miss flow en-
try (with no match) and the LLDP flow entry (matching protocol:
0𝑥88𝑐𝑐) are not traffic-routing flow entries, and are thus not moni-
tored by them. As a result,Marionette poisonous flow entries
will not be detected as a conflict because they do not conflict with
the monitored traffic-routing flow entries but the unmonitored
table-miss and LLDP flow entries. Similarly, NetPlumber [34] em-
ploys header space analysis to construct a plumbing graph captur-
ing all possible flow paths to ensure incoming flow entries comply
with predefined network flow policies. Marionette uses poi-
sonous flow entries to impact link discovery results and has no
signature yet.

Unlike existing malicious routing attacks (A.3) which insert ma-
licious flow entries to alter data plane traffic routing directly [6,
34, 36, 66] 7, the flow entries inserted by Marionette match
ether-src (with in-port) to supersede table-miss/LLDP flow en-
tries thus manipulating LLDP packet forwarding. This results in the
benign controller independently routing traffic incorrectly due to
the false topology. This attack is understudied and is undetectable
by existing defenses.

Table 3 summarizesMarionette’s features and justifies why
these features enableMarionette to evade existing detections.

4 Threat Model

The goal of this work is to persistently poison the topology view of
SDN controllers to alter some routes to enable traffic eavesdropping
or flow exclusion from monitoring at a switch. The control plane
topology poisoning attack is an indirect data plane attack that can
be initiated from either a malicious controller in a fault-tolerant
multi-controller scenario or a malicious SDN application above
the control plane (see Figure 3). Unlike existing link fabrication
attacks [8, 29, 60], our approach does not require any switches
7Because each flow entry has a priority value such that the highest priority match
takes precedence when a packet may match multiple flow entries, a malicious flow
entry with higher priority can conflict/override existing flow entries to manipulate
flow routing.
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or hosts to be compromised or malicious. The victims are benign
controllers and the rest of the impacted network.
Application-Controller Scenario. In this scenario, a malicious
application runs on top of a secure control plane—an attack vec-
tor popular in existing works [16, 37, 66, 67]. SDN is designed to
support third-party applications. These applications may originate
from third-party developers8 or be a REST client [37] using the
northbound interface9 and are thus untrusted and potentially mali-
cious [66]. Attackers may also phish to repackage or redistribute
malicious installers that infect controllers at runtime [72]. Con-
figuring flow entries is fundamental for many SDN applications
(e.g. routing applications). Both OpenDaylight and ONOS provide
northbound RESTful APIs for configuring flow entries. Attacks
originating from SDN applications necessitate basic privileges, in-
cluding read permissions to topology, nodes (switches), and flow
table information, and write permission to the flow table. Notably,
the malicious SDN application does not exploit northbound API
vulnerabilities or attempt to exhaust controller resources. Instead, it
utilizes these privileges normally to evade existing malicious SDN
application defense strategies [39, 56].
Multi-Controller Scenario. This scenario comprises a fault-tolerant
multi-controller SDN architecture in which one of the controllers
is malicious. Attackers have leveraged rogue package managers or
controller source code repositories [72] to compromise a controller,
and controller impersonation attacks [20, 38, 43] to introduce a ma-
licious controller in the cluster. The minimum required privileges
of the malicious controller include read permissions to the topology,
nodes (switches), and flow table data store, along with write per-
missions to its own flow table data store. These requirements align
with the fundamental capabilities of OpenDaylight’s and ONOS’s
fault-tolerant replication implementation and can be fulfilled with-
out necessitating the leader role within the fault-tolerant cluster.
This is because a malicious controller can induce changes in the net-
work topology via (1) the direct manipulation of flow entries in the
OpenFlow switches when it has an equal role 10, or through (2) a
confused deputy attack when it has a follower role, in which flow
entries are altered in the malicious controller’s datastore, causing a
leader controller to learn and deploy these entries through consen-
sus. Consequently, the malicious controller can operate with any
(leader, equal, or follower/none) role to launch theMarionette
attack.

5 Marionette Flow Entry Design

This section details Marionette’s flow entry design using the
example presented in §2.

8The open-source SDN controller projects (e.g. OpenDaylight and ONOS) allow third-
party developers to submit their applications to be included in the official repositories.
What’s worse, some commercial products (e.g. Samsung SDN solution [48], Cisco
ACI [21], Comcast [69]) are developed based on open-source controllers. Network
solution companies also provide applications to run on their SDN controllers (e.g.
Junos Space [33], Cisco ACI [21]).
9The Restful northbound API is supported by both OpenDaylight and ONOS controller
to support diverse applications even written in diverse languages.
10OpenFlow v1.3 [63] defines three roles for a controller: leader, follower, and equal.
A follower controller has read-only access to the switch and does not receive asyn-
chronous messages(e.g. packet-in). Both leader and equal controllers can modify the
switch state and receive asynchronous messages from the switch.

5.1 Precise Link Manipulation

The flow entries that instruct data plane traffic forwarding can
also be used for discovery packet forwarding. Existing discovery
protocols typically utilize the default table-miss flow entry or a
flow entry matching the LLDP packet type (which we call LLDP
flow entry) to cause incoming LLDP packets to be forwarded to
the controller in a packet-in message. Similarly, it is possible to use
flow entries to manipulate discovery packet forwarding to fabricate
links. To do this, poisonous flow entries must be inserted into the
switch at a higher priority than the table-miss/LLDP flow entry.
The addition of poisonous flow entries at a higher priority than
existing entries will not affect the hit rate metrics of existing entries
as discussed in §5.2.

Link fabrication requires the following:

Rule 1. Given port 𝑥 of switch 𝐴 and port 𝑦 of switch 𝐵 that are

not directly connected, to fabricate a link 𝐴𝑥 → 𝑦𝐵, an attacker must

force a discovery packet sourced from (𝐴, Port:𝑥) to be received at (𝐵,

Port:𝑦).

To execute the attack, we take advantage of the fact that LLDP
packets do not encode intermediate link information. For this rea-
son, the controller only knows the node and port to which it sends
the discovery packet and the node and port from which the discov-
ery packet is returned. It uses these two pieces of information from
all of the discovery packets to map the network. The controller ex-
pects that each switch will send the discovery packet back to it at
each hop allowing it to learn every link. To make switch 𝐶 appear
invisible on link𝐴2→ 1𝐵 to the controller in our example, we must
therefore force switch 𝐶 to forward the LLDP packet to 𝐵, rather
than pass it back to the controller. We can do so by creating a poi-
sonous flow entry with a higher priority than the table-miss/LLDP
flow entry in Switch 𝐶 . For example, it is easy to construct a naïve
poisonous flow entry in 𝐶 that forwards all packets of type LLDP
(i.e., ethernet-type:0x88cc) to switch 𝐵. So, we can simply insert
flow entry 𝑒𝐶1 on 𝐶:

𝑒𝐶1 match: ether-type: 0x88cc action: output: 2

However, this flow entry is easily detectable because “0x88cc" can
be recognized as LLDP and this flow entry’s output is atypical for an
LLDP-related flow entry. A normal LLDP flow entry has the actions
as the to_controller rather than a out_port_num. Moreover, it is
problematic because links are bidirectional (𝐴2↔ 1𝐶2↔ 1𝐵). The
poisonous flow entry 𝑒𝐶1 on 𝐶 influences all LLDP packets received
by𝐶 , so the entry can fabricate links but fails to precisely affect the
bidirectional link. This may result in one port being part of two links
which can be detected by existing port-based detection [12, 23].

To manipulate links through a stealthy set of poisonous flow
entries, we rely on the MAC addresses of the source switch port
to fabricate links shown as flow entries 𝑒𝐶2 and 𝑒𝐶3 on 𝐶 . These
entries achieve our goal without conflicting with other flow entries
because all MAC addresses are unique, and only discovery packets
(of all types) use the switch port MAC address as the source MAC
in their header.

𝑒𝐶2 match: ether-src: A2_mac action: output: 2
𝑒𝐶3 match: ether-src: B1_mac action: output: 1

Stealthiness. Note that 𝑒𝐶2 and 𝑒𝐶3 are stealthy because nothing
easily detectable is contained in the “match" field of the flow entry.
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The MAC address of a switch port is nothing but a string of 12
hexadecimal digits as any host. We call the design of 𝑒𝐶2 and 𝑒𝐶3 a
vanilla poisonous flow entry design, and it directly attacks most of
the existing SDN discovery protocols because the standard ethernet
header is mandatory on any discovery packet.

5.2 VLAN-based Poisonous Flow Entries

However, ONOS controller uses the ether-src field of LLDP pack-
ets to store a unified fixed fingerprint (FFP) to identify clusters [10].
This limits the attack effectiveness when matching the ether-src
to distinguish LLDP packets from different sources; therefore, we
need another approach.

To realize the attack, we first configure 𝑒𝐶4 and 𝑒𝐶5 matching
ether-src with in-port on𝐶 to distinguish 𝐿𝐿𝐷𝑃𝐴2 and 𝐿𝐿𝐷𝑃𝐵1
to fabricate links 𝐴2→ 1𝐵 and 𝐴2← 1𝐵:

𝑒𝐶4 match: ether-src: FFP, in-port: 1 action: output:2
𝑒𝐶5 match: ether-src: FFP, in-port: 2 action: output:1

However, 𝑒𝐶4 and 𝑒𝐶5 are problematic for later link fabrications.
For example, in order to fabricate 𝐴1→ 2𝐶 , we need to route the
𝐿𝐿𝐷𝑃𝐴1 to be received at (𝐶 , Port:2) (𝐴1→ 1𝐷2→ 2𝐸1→ 2𝐵1→
2𝐶) based on the real topology. Irrespective of the configuration
on 𝐷 , 𝐸 and 𝐵, suppose that the 𝐿𝐿𝐷𝑃𝐴1 has been forwarded to
(𝐶 , Port:2); 𝐶 should forward it to the controller to complete link
𝐴1→ 2𝐶 discovery, but it will forward 𝐿𝐿𝐷𝑃𝐴1 to 𝑃𝑜𝑟𝑡 : 1 due to
𝑒𝐶5 . To address this problem, we can use virtual local area network
(VLAN) tagging to distinguish the sources of LLDP packets. Each
VLAN has its own ID (𝑣𝑙𝑎𝑛_𝑖𝑑), and we use this attribute to tag a set
of flows passing through the switch, and then match on them. To
tag flows, we use the action push-vlan in our flow entry as shown
in 𝑒𝐷6 . This entry is configured on switch 𝐷 and is used to tag the
sources of 𝐿𝐿𝐷𝑃𝐴1.

𝑒𝐷6 match: ether-src:FFP, in-port: 1 action: push-vlan:1, output:2

By pushing vlan_ids to the LLDP packets at their first hop, the
sources are marked precisely without any flow entry conflicting
issues. The push-vlan action is therefore also added to 𝑒𝐶4 and 𝑒𝐶5 .
As the last step of fabricating 𝐴1→ 2𝐶 , the flow entries 𝑒𝐸7 on 𝐸,
𝑒𝐵8 on 𝐵 and 𝑒𝐶9 on 𝐶 listed below are needed to collaborate with
𝑒𝐷6 on 𝐷 , and 𝑒𝐶9 ’s priority must be higher than 𝑒𝐶5 on𝐶 to function
correctly. 𝑒𝐸7 matches on the vlan_id and forward to 𝐵 through
(𝑃𝑜𝑟𝑡 : 1). Similarly, 𝑒𝐵8 matches on the vlan_id and forward to 𝐶
through (𝑃𝑜𝑟𝑡 : 1). 𝑒𝐶9 removes the vlan_id using the pop-vlan
action and sends the original 𝐿𝐿𝐷𝑃𝐴1 to the controller as desired.

𝑒𝐸7 match: vlan-id: 1 action: output:1

𝑒𝐵8 match: vlan-id: 1 action: output:1

𝑒𝐶9 match: vlan-id: 1 action: pop-vlan, to_controller

We refer to these types of entries as VLAN poisonous flow entry

design (𝑒𝐷6 and 𝑒𝐶9 are called 𝐸𝑉𝑆𝑡𝑎𝑟𝑡 and 𝐸𝑉𝐸𝑛𝑑 respectively, 𝑒𝐸7
and 𝑒𝐵8 are called 𝐸𝑉𝐵𝑜𝑑𝑦 ) and define the path 1𝐷2 → 2𝐸1 →
2𝐵1 → 2𝐶 for fabricating 𝐴1 → 2𝐶 as the poisoning path. The
VLAN poisonous flow entry design is also important even when
ether-src is available to distinguish the source of the LLDP packet
because the VLAN tunnel can be reused for gap-patching (described
in Section 5.3).

To fabricate the same link, the number of poisonous flow en-
tries matching on ether-src is less than the case of matching on
[ether-src, in-port] because (1) VLAN is not mandatory for the
single-hop case𝐴2− 1𝐵, thus no vlan_id is needed and we can use
𝑒𝐶2 and 𝑒𝐶3 safely without flow entry conflicts, and (2) the 𝐿𝐿𝐷𝑃𝐴1
can be forwarded to the controller with a default table-miss flow
entry instead of configuring 𝑒𝐶9 to avoid flow entry conflicts. Thus,
the vlan_id can be safely popped at 𝐵 by adding pop-vlan to the
𝑒𝐵8 .

𝑒𝐵8
′

match: vlan-id: 1 action: pop-vlan, output:1

Stealthiness. Each flow entry in a flow table has a corresponding
metric, which increments each time a particular entry routes a
packet. As a result, to make deceptive flow entries as stealthy as
possible, we must ensure that the new entries do not interfere with
the counting rates of existing ones. Our distinguishable ether-src
VLAN approach keeps these counts consistent because the original
table-miss/LLDP flow entries are always used to forward (original
or relayed) LLDP packets back to the controller to maintain the
same degree sequence of the topology. But when we have to use
[ether-src, in-port] to fabricate links precisely, the metric of
original table-miss/LLDP flow entries cannot remain consistent
because the mis-forwarded LLDP packet has to be fed back to
the controller by our flow entries as 𝑒𝐶9 , instead of original table-
miss/LLDP flow entry.

Note that the distinguishable ether-src VLAN poisonous flow
entry design is the default setting for the following discussion
unless specified differently. The route of this motivating example is
simple with only one hop length. In real network scenarios, there
could exist multiple switches along a route 𝐴𝑥 → 𝑦𝐵 that need to
be configured. This poses a non-trivial challenge and is discussed
in Section 6.2.

5.3 Gap Patching Flow Entries

Once the poisonous flow entries are set, the controllers believe that
switch 𝐴 directly connects to switch 𝐵, when in reality switch 𝐶 is
in the middle. As a result, when inserting flow entries for paths that
include the deceptive link between 𝐴 and 𝐵, the controller will not
configure a corresponding flow entry on 𝐶 to complete the path
because it is unaware that 𝐶 is on the path. This results in a gap in
the path configuration.

We fix this issue through a gap patching process. The idea is that
for each fabricated link setup, we must ensure that the first hop
on the fabricated link will route packets along the poisoning path
of that link. To avoid flow rule conflict with the legitimate flow
entries, we combine the in-port with the original match as the
match of the gap-patching flow entries to prevent any other normal
forwarding packets from hitting this flow entry. For the single-hop
gap of flow 𝑓1 : (𝐻1, 𝐻2) caused by the single-hop poisoned path,
this is done through a flow entry like 𝑒𝐶10. For a longer gap of flow
𝑓2 : (𝐻1, 𝐻3), which is caused by a longer poisoning path, we can
take advantage of the existing VLAN poisonous flow entries by
simply adding a flow entry that pushes the corresponding VLAN
tag to the 𝑓2 packets on the VLAN start switch 𝐷 as shown in 𝑒𝐷11.
In either case, only one flow entry is required to patch the gap.
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𝑒𝐶10 match: ether-dst: H2, in-port:1 action: output: 2

𝑒𝐷11 match: ether-dst: H3, in-port:1 action: push-vlan: 1, output:2

Stealthiness. Note that we could get away without gap patching
if the controller has the reactive forwarding feature enabled. This
is because the controller will send an unknown packet back to
the switch with a packet-out message and instruct the switch
to flood the packet across all ports, filling in the gap. However,
we still patch gaps even in reactive forwarding because (1) too
many packet-in message requests sent to the benign controller at
a time are suspicious; and, (2) switch flooding unnecessarily wastes
network resources.

Another note is that the gap patching is undetectable by the flow
rule checker (i.e., (D.9) in Table 3). Because gap patching happens
after the topology is poisoned, the switches having gap patching
flow entries will not be on the flow paths computed based on the
deceptive topology. As a result, the flow rule detection fails to
correlate the gap-patching flow entries with the flows based on its
logic graph.

6 System Design

To automate and scale up the attack, we designedMarionette,
a framework that automatically learns an existing topology, gen-
erates a poisoned topology from an attacker’s goal (e.g., evading
a network monitor, conducting a man-in-the-middle attack), and
generates flow entries to instantiate the poisoned topology. The
framework comprises four modules: Information Collection, Poi-
sonous Topology Computation, Poison Computation and Setup,
and Gap Patching, as shown in Figure 4. The interaction follows
a sequence of eight steps. Note that the framework assumes the
presence of a malicious controller within the controller cluster, op-
erating in the follower/none role and without direct connection to
the underlying network. When theMarionette attack is initiated
from a malicious application in an application-controller scenario,
it follows similar steps. More details on the individual steps are
provided in the full version paper [20].

In Steps ➀ and ➁,Marionette learns the topology and switch
information of a network from the replication controller’s data
store, and then uses this information as the basis for a reinforcement
learning (RL) model to compute a deceptive poisonous topology.
Step ➂ involvesMarionette composing stealthy poisonous flow
entries to manipulate links based on the information gathered in
Step ➀ to construct the computed target topology in Step ➁. In Step
➃, the Gap Patching module identifies and computes the required
gap-patching flow entries for existing flows. In Step ➄ and Step
➅, the poisonous and gap-patching flow entries are configured to
the passive replication controller’s data store and propagated in
the controller cluster by the data store consistency mechanism.
The leader controller accepts these data store updates and sends
the poisonous and gap-patching flow entries to the network on
behalf of Marionette. In Step ➆, the benign leader controller
in the cluster independently discovers the topology which is the
one designed by Marionette from Step ➂. As a result of the
altered topology, the leader controller calculates and sends new
routes over the deceptive topology in Step ➇. The flows will arrive
at their proper destinations since gap patching occurs beforehand
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Figure 4: Marionette framework

in Step ➅ and the Gap Patching module keeps monitoring the flow
table to patch when necessary.

In a controller cluster with an active replication design, where
the malicious controller assumes an equal role,Marionette can
independently send poisonous and gap-patching flow entries while
concealing them by not updating the flow table data store.

6.1 Poisonous Topology Computation

The specific attack goal determines the desired deceptive topol-
ogy. We focus on two attack goals due to space considerations but
can support others: (1) routing traffic to an eavesdropping switch
point; (2) routing traffic away from a monitor at a given switch
point. To create a deceptive topology to satisfy these attack goals,
Marionette learns the existing topology through an information-
gathering step. With the real topology and the node targeted for
an attack (i.e., for eavesdropping or evasion), it employs an RL al-
gorithm taking the collected information and the attack goal to
output the desired topology.

RL uses machine learning training methods to train an agent
to accomplish some task or behavior based on trial-and-error by
executing a set of actions to attain a goal. Training is done through
a feedback loop, where the RL agent is given a reward for desirable
actions that lead it closer to the goal, and a penalty for actions that
are counter to the goal. The agent is effectively a state machine,
and after each action, it receives a transition to the next state, and
feedback from the environment in the form of a reward or penalty.

We choose RL over traditional methods because:

• RL adaptation: The reward component of the RL algorithm
can be easily adapted to meet different goals, without modi-
fying the algorithm.
• Flexibility: RL provides flexibility in incorporating specific
constraints relevant to the attack goals.
• Feasibility: The traditional brute force exploration space can
be huge: 𝑆 =

(𝑛
𝑚

)
∗ (

(2∗𝑚
2
)
∗
(2∗(𝑚−1)

2
)
... ∗

(4
2
)
− 1) where 𝑛 is

the total number of edges,𝑚 is the number of edges allowed
to be changed with a similarity constraint.
• Best effort: Unlike traditional optimization formulations that
may fail to find the optimal solution within a polynomial
running time and return no solution, RL provides its best
effort result, which is often satisfactory.
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Figure 5: 2-switch actions on PA matrix

To create a realistic and stealthy topology using RL, we enforce
two constraints: (1) maintaining the same degree sequence as the
real topology, and (2) ensuring a threshold level of similarity be-
tween the poisoned and real topologies. Constraint (1) is important
because distinct degree sequences are easily detected through the
collection of network information via the OpenFlow protocol. Ad-
ditionally, as our attack utilizes original discovery packets, but
does not fabricate any discovery packet, the number of links in
the poisoned topology cannot exceed the number of links in the
real topology. Constraint (2) aims to prevent suspicion by avoiding
sudden and significant alterations in the topology.

To accelerate the learning process, we analyze the topology char-
acteristics and attack goal to guide the agent by certain actions [52]
which will be discussed after introducing actions of our RL model.
State. The state of the model is the topology after changes caused
by actions. The initial state is the real topology. Mathematically, we
define a port-based adjacency (PA) matrix to depict the topology:

Definition 1. Given a topology with 𝑛 switches and𝑚 bidirec-

tional links, 𝑝𝑖, 𝑗 is the port number on switch 𝑠𝑖 such that switch 𝑠𝑖
connects to switch 𝑠 𝑗 through port 𝑝𝑖, 𝑗 , 𝑛𝑖, 𝑗 = (𝑠𝑖 , 𝑝𝑖, 𝑗 ) is called the

neighbor of switch 𝑠 𝑗 . A port-based adjacency matrix is a 𝑛×𝑛 matrix

𝐴 such that:

𝐴𝑖,𝑗 =

{
𝑝𝑖,𝑗 , if there is a link from switch 𝑠𝑖 to switch 𝑠 𝑗
0, otherwise

(1)

Action. A well-known result is that graphs with the same degree se-
quence can convert to each other via a sequence of 2-switches [13].
A typical 2-switch is deleting any two edges and reconnecting the
idle ports differently [13]. There are various ways to change the
graph while maintaining the same degree sequence and they can
be converted by several 2-switches. Another method to change
the graph while maintaining the degree sequence is what we call
node-reallocation. The node-reallocation is a series of 2-switches as
shown in Figure 5 which is essentially only one node-reallocation
(reallocating 𝐶 between 𝐴 and 𝐷) but three 2-switches. Mathemat-
ically, a 2-switch is a sequence of element switching on the PA
matrix shown in Figure 5. The color of the matrix elements matches
the color of the bidirectional fabricated links:
Action Priors. Both 2-switch and node-reallocation lead to any
graph that has the same degree sequence. However, certain ac-
tions may work faster than others on different topologies. We use
this observation as the action priors [52] to accelerate the learning

process. Intuitively, node-reallocation is well suited to force a dif-
ferent route to be chosen because it is the unit action that directly
changes the routing distance (e.g.𝐴2− 1𝐵2− 1𝐸 seems shorter than
𝐴1 − 1𝐶2 − 1𝐷2 − 2𝐸 after reallocating C between 𝐴1 − 1𝐷). How-
ever, the 2-switch action is more efficient than node-reallocation
on a tree(-like) topology because there are no (less) other routes
that can be forced on a tree topology due to its acyclic nature. In
our evaluation, we choose an action of either 2-switch or node-
reallocation based on their suitability for different topologies. The
action space size is equal to

(𝑚
2
)
, where𝑚 is the number of edges.

Note that a link re-connecting to a different port on the same node
is also considered as changing the adjacencies.

The number of actions 𝑛𝑎 in each training episode depends on
the network size 𝑛 and similarity requirement 𝑠 ∈ [0, 1] because an
increasing number of actions in each episode results in a fabricated
topology that diverges more from the real topology. We choose
the number of actions roughly by 𝑛𝑎 ≈ 𝑛 · (1 − 𝑠). We must also
preserve the connectivity of the altered topology realistically after
each action.
Reward. We define two dimensions to measuring a reward. First,
our goal is to either divert as many flows as possible to a given
eavesdropping switch (𝑠𝑣𝑢𝑙 ) or drive as many flows as possible
away from a monitoring switch point (𝑠𝑚𝑜𝑛). We refer to this max-
imization of flow diversions to or away from a node as our flow
coverage goal. Second, we wish to maintain a graph similarity be-
yond a threshold value to be stealthy. For each step, when the flow
coverage on 𝑠𝑣𝑢𝑙 (𝑠𝑚𝑜𝑛) is greater (less) than the threshold value
and the graph similarity is beyond the threshold value, a reward of
1 is granted. Otherwise, the reward is -1 (penalty). Episode training
is complete when a step achieves the goal. Here we prioritize the
flow coverage goal and guarantee a certain graph similarity value.
Flow Coverage: After the topology has been altered, the flow routing
will be re-calculated based on the poisoned topology.Wemust check
whether this altered topology can trigger enough flow routing
updates that meet the flow coverage goal on node 𝑠𝑣𝑢𝑙 /𝑠𝑚𝑜𝑛 . Nodes
such as 𝑠𝑣𝑢𝑙 may not appear on the paths in the poisoned topology;
however, they are still on those paths in the real topology. It is
problematic to calculate flow coverage by directly checking whether
the 𝑠𝑣𝑢𝑙 is on the updated paths based on the poisoned topology.
The correct approach is to check whether the real neighbors of
𝑠𝑣𝑢𝑙 are on the updated paths. For the example in Figure 1, the
updated path 𝑃𝑢𝑝𝑑𝑎𝑡𝑒 : 𝐻1− > 3𝐴2− > 1𝐵2− > 1𝐸3− > 𝐻2 does
not include 𝐶 based on the deceptive topology. But 𝐶 is actually
between 𝐵 and 𝐸 in the real topology. We can infer this result by
checking whether the real neighbors of 𝐶 are on 𝑃𝑢𝑝𝑑𝑎𝑡𝑒 . 𝐴 : 2
and 𝐵 : 1 are 𝐶’s real neighbors and they are on 𝑃𝑢𝑝𝑑𝑎𝑡𝑒 , so we
know this deceptive topology meets our goal to eavesdrop flow 𝑓1
on 𝐶 . Finally, we count the number of such paths to get the flow
coverage result. Note that the neighbor node is associated with a
port number as defined in Definition 1.
Graph Similarity: There are various ways to evaluate the similarity
between graphs. We choose a simple method called vertex/edge
overlap (VEO) [51] as it fits our scenario well. VEO measures the
overlapped vertices and edges between graphs.

Since we maintain the degree sequences of the topology graph,
the numbers of vertices and edges do not change. As a result, the
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higher the number of vertices, the less sensitive the similarity score
is to changes in the edges. To exclude this negative influence caused
by the number of nodes, we derive the edge overlap (EO) method
from VEO to evaluate graph similarity for our case and compute it
with the following formula:

𝑠𝑖𝑚𝐸𝑂 (𝐺,𝐺 ′ ) = |𝐸 ∩ 𝐸
′ |

|𝐸 | (2)

Where 𝐺 and 𝐺 ′ are the real topology and poisoned topology, and
𝐸 and 𝐸′ are the edge sets for both graphs.
Stealthiness.Marionette modifies only a few links in a large
network while maintaining the degree of each network node to
evade (D.4) port-based detection. The similarity constraint is for
avoiding manual detection, implementing the intuition that topolo-
gies should not change dramatically. Because some goals on certain
topologies are impossible to meet while maintaining the same de-
gree sequence regardless of the similarity, this RL model is a best-
effort algorithm. The strictness of the constraints (similarity) and
the effectiveness of goals (flow coverage) have a tradeoff that needs
adjusting based on the situation.

6.2 Poison Computation and Setup

Once the RL workflow creates a poisonous topology,Marionette
generates and installs the poisonous flow entries to realize the de-
ceptive topology. In §5, we introduced a topology poisoning attack
using poisonous flow entries and provided examples of simple link
poisoning. However, in large network scenarios, the setup of poi-
sonous flow entries can become complex due to the sheer number
of possible links that can be manipulated with possible interme-
diate nodes along the path. To scale our approach, we designed
a general algorithm for computing the necessary poisonous flow
entries for each hop, taking into account the network topology,
switch nodes, and a deceptive link as input. The algorithm of the
precise link manipulation implements Rule 1, focusing on how to
ensure that the discovery packet sent from (𝐴, 𝑃𝑜𝑟𝑡 : 𝑥) is received
at (𝐵, 𝑃𝑜𝑟𝑡 : 𝑦).

6.3 Gap Patching Computation and Setup

Once the topology has been poisoned, the routes calculated by
the benign leader controller based on the deceptive topology may
contain gaps as described in §5.3. We address this proactively and
reactively. For proactive patching, we set the gap-patching and
poisonous flow entries together because we can predict the new
routes for existing flows. In reactive forwarding mode, the con-
troller instructs the switch to flood this unexpected packet 11 with
packet-out message to all its ports. This behavior providesMar-
ionette with ample time to patch the gaps. In this context, the
latency performance of the gap-patching model primarily affects
stealthiness rather than persistence. Reducing the number of unex-
pected packets sent to benign controllers results in a lower level of
suspicion.

11When a packet is forwarded to the controller by a switch, but the switch’s position
contradicts the packet’s routing path based on the recent topology, we designate it as
an unexpected packet to the switch.

Table 4: Marionette attack level towards SDN Controllers

Controller Protocol Security MAC LLDP/BDDP Attack

Floodlight [55] HOFDP Hash src switch port Complete

OpenDaylight [25] OFDP Hash src switch port Complete

ONOS [10] HOFDP No Fingerprints Complete

Ryu [1] OFDP No src switch port Complete

Pox [45] OFDP No src switch port Complete

7 Evaluation

We evaluate Marionette against 10 SDN discovery protocols
that use LLDP or variants for topology discovery (§7.1), and 5 open-
source SDN controllers (§7.2). We demonstrateMarionette at-
tacks starting with a controller impersonation attack on both the
OpenDaylight and ONOS clusters (§7.3). We then evaluate our RL
agent on two use cases: (1) traffic eavesdropping and (2) monitor-
ing evasion (§7.4). Lastly, we measureMarionette’s stealthiness
against the current state-of-the-art in SDN attack detection – Pi-
coSDN [67].

7.1 Attacking discovery protocols

Marionette can attack nine different SDNdiscovery protocols [20].
There are various versions of SDN Discovery Protocols aiming to
enhance performance by reducing unnecessary discovery packet
transmissions. These protocols use customized discovery packets
while relying on the same or similar discovery mechanism as OFDP,
making them vulnerable to our attack. Hybrid OFDP (HOFDP) uses
LLDP packets along with Broadcast Domain Discovery Protocol
(BDDP) packets to discover a hybrid network (both legacy and SDN
devices), following OFDP’s mechanism. The BDDP packet has a
standard ethernet header with ether-src, making it vulnerable to
our poisonous flow entries, too.
Discussion. Among the SDN discovery protocols, only SLDP [46],
TILAK [47], and sOFTP [11] address security issues related to dis-
covery. However, they focus on the data plane, as existing topology
poisoning attacks are typically initiated from the data plane. For
example, SLDP randomizes the ether-src, which inhibits a suc-
cessful attack unless we use VLAN-based poisonous flow entries to
regain full control. Only sOFTP provides a partial defense against
Marionette because sOFTP only partially relies on OpenFlow
for link discovery.

7.2 Attacking SDN controllers

We evaluate 5 popular open-source SDN controllers (Table 4) us-
ing the illustrative example introduced in §5 assuming a topology
poisoning attack initiated by a malicious application. We deploy
Mininet-v2.2.2, Floodlight-v1.2, OpenDaylight-v0.15.3, ONOS-2.2.0,
Ryu-v4.34, and pox-v_eel on six connected VMs with Linux systems
on the CyberVAN testbed [17].

Among the five controllers, only OpenDaylight and Floodlight
have implemented security enhancements by introducing hash
checks on LLDP packets [68]. However, the hash check mechanism
does not defend againstMarionette as our technique does not
tamper with LLDP packets but modifies the LLDP packets’ path.
Indeed, we achieved precise topology poisoning on all controllers.

 

3713



Manipulating OpenFlow Link Discovery Packet Forwarding for Topology Poisoning CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

(a) Original topology on ONOS

(b) Topology after attack on ONOS

Figure 6: Marionette attack on ONOS cluster

Interestingly, while Ryu and ONOS lack security enhancements
in discovering the topology, they present additional challenges
in launching a successful attack. Ryu sets its flow entries for for-
warding LLDP packets back to the Ryu controller with the highest
priority in the flow table. As a result, Marionette must lower
the priority of the entries set by the Ryu controller before initiating
the attack. ONOS employs per-logical-plane fingerprints encoded
on the ether-src field, resulting in a unified value of ether-src
per cluster. As a result, VLAN-based poisonous flow entry match-
ing [ether-src, in-port] is mandatory to identify the source of
discovery packets for all three deceptive links. To conclude,Mari-
onette can attack all 5 open-source controllers.
Discussion. Discovery packet flow entries are static and specifically
serve the control plane. As a result, they should not be changed or
overridden easily by arbitrary controllers. Unfortunately, there is
currently no access control mechanism for flow entry enforcement
implemented in any of the SDN controllers examined.

7.3 Attacking SDN Controller Clusters

Among all open-source controllers, only OpenDaylight and ONOS
support controller clustering [25] [10]. To assess the attack in both
OpenDaylight and ONOS cluster scenarios, we first initiate a con-
troller impersonation attack occurring when a controller goes of-
fline, and a malicious machine located in the same subnet exploits
the opportunity to join the cluster by impersonating the offline
controller [20]. The experiment on the ONOS cluster is described
below.

We construct a three-node ONOS cluster. The cluster is built
with ONOS docker onosproject/onos:2.2.2 and atomic docker
atomix/atomix:3.1.5 on the host machine with Ubuntu 20.04.6
LTS system. Its network is simulated with Mininet-v2.3.0 on the
host machine. The third controller ONOS-3 is in passive replication
mode without a direct OpenFlow connection to the Mininet.

We recreate our example scenario (§5) on the ONOS cluster, with
attack results shown in Figure 6. We use VLAN-based poisonous
flow entries to poison the topology view of the controllers.

In this experiment, we define a topology on Mininet as shown
in Figure 6(a) and connect it with ONOS-1 and ONOS-2; ONOS-
3 is not connected, serving as a passive replication of the control
plane. The malicious ONOS-mal takes ONOS-3’s identity in the
cluster and sets up computed poisonous flow entries regardless of

Table 5: Networking Scenario and Randomized Flows

Attack Goal Topology # Nodes # Edges # Flows Max Degree

Eavesdrop Node 6 FatTree 36 48 120 4

Evade Node 8 Chinanet 42 66 89 20

not connecting with Mininet, either. After that, the topology view
changes on all the controllers and settles as shown in Figure 6(b).
Nodes B and D switched their locations.

ONOS has reactive forwarding enabled so it fixes the gap auto-
matically when we start the ping from 𝐻1 to 𝐻2 after the topology
poisoning. Because the version of ODL we use does not have an
available forwarding application, we wrote a proactive flow rule
installation application on it. To show the gap, we only sent gap-
patching flow entries after the controller changed the routing based
on the deceptive topology.
Discussion.In both OpenDaylight and ONOS clusters, any con-
troller, regardless of role, can set up flow entries even without a
direct OpenFlow connection due to the data store consistency mech-
anism. When a passive replication controller sets up flow entries, it
actually updates its flow table data store. This update is captured
and accepted without evaluation by other controllers including the
leaders. As a result, the leader controllers set up the flow entries to
the network on behalf of it.

7.4 Poisonous Topology Computation by RL

Enterprise networks and backbone networks are both common SDN
scenarios [42]. To validate the practicality of our attack, we evaluate
our RL algorithm on an enterprise fat tree topology [40] and a
backbone network with centralized nodes named Chinanet [50].
Table 5 summarizes the topologies and flows used in our evaluation.

We implemented the RL algorithm with Python3.9 using the
Stable-Baselines3 [14]. The 2-switch and node reallocation actions
are used because these are the unit actions to change a graph while
maintaining the same degree sequence, and they are efficient ac-
tions for training on the tree topology and cyclic topology, respec-
tively. Because evading monitoring is harder to achieve, we set 10
actions per episode for Chinanet case and 5 for FatTree. With the
equation of 𝑛𝑎 = 𝑛(1 − 𝑠), where 𝑛 is the number of links, 𝑠 is the
similarity, and 𝑛𝑎 is the number of actions per episode (§6.1), the
similarity threshold for FatTree and Chinanet are roughly set to
0.9 and 0.8, respectively. For each step, a reward of 1 is granted
to the RL agent if: (1) the number of the shortest path routes cov-
ered by the eavesdropping/monitoring node is greater/smaller than
the flow coverage goal and (2) the similarity is above the threshold
value. Otherwise, a -1 is granted. Because a failed action causes a
-1 reward, the acceptable Episode Reward Mean of FatTree and Chi-
nanet topologies are the ones larger than -5 and -10, respectively,
meaning at least one success is made.
Eavesdropping on Enterprise Network. We depict a general fat
tree topology as an enterprise network. The goal of this example
(Figure 7) is to determine a poisonous topology that will route four
additional flows through Node 6 using shortest path routing. Node
6 has 52 out of 120 randomly generated flows covered originally.
We use the 2-switch action to train the model since this is a tree-like
topology.
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(a) Real Fat Tree with orig-
inal routes

(b) Deceptive Fat Tree with
updated routes

(c) Real Fat Tree with up-
dated routes

Figure 7: Eavesdrop Node 6 (Fat Tree) covering 4 extra flows

(a) RL achieved metrics (b) RL training log

Figure 8: RL for different eavesdropping goals (Fat Tree)

Figure 7(a) shows the real topology with the four flows on their
original routes. Figure 7(b) shows the deceptive topology computed
by RL. The routes of the four flows are changed based on the decep-
tive topology. They all traverse Node 6 according to the shortest
path routing. In Figure 7(c), the induced routes of those four flows
still traverse Node 6 on the real topology, thus achieving the goal.
The induced shortest path routes of those four flows have two gaps,
one at Node 10 and one at Node 19, that will be patched by the gap
patching module discussed in §6.3.

Figure 8 shows the details of the RL algorithm results for five dif-
ferent flow coverage goals and their corresponding episode reward
mean (ERM) during the training. In Figure 8(a), the graph simi-
larity decreases with an increase in the flow coverage goal which
means more changes are required to eavesdrop on more flows. We
achieved up to 32 additional flows being routed through Node 6 as
a result of the deceptive topology while still maintaining the same
degree sequence as the original topology and achieving a similar-
ity larger than 0.9 when compared with the real topology. Figure
8(b) shows that the ERM of the three lowest coverage goals stops at
around 50,000 steps (indicating a convergence) because the callback
function to stop training when the reward meets threshold -4 is set.
However, the ERM for covering 84 flows at Node 6 fails to converge
(maintained -5 except for 1 timepoint) and never stops before the
end of the total steps, meaning this is a hard goal to achieve. De-
spite this, the RL still found a solution because of the 1 timepoint
(around Step 30000) with ERM greater than -5.
Evading Monitoring on Backbone Network. The attack goal
on the Chinanet topology (Figure 9) is to drive four flows away
from Node 8 which may be a monitoring point that we wish to
avoid. Node 8 originally covers 51 out of 89 randomly generated
flows. We use node-reallocation action to train the model since it is
a mesh-like topology.

Figure 9(a) shows the real topology with the four flows on their
original routes, all traversing Node 8. Figure 9(b) shows the de-
ceptive topology learned by our RL model. The routes of the four

(a) Real Chinanet with
original routes

(b) Deceptive Chinanet
with updated routes

(c) Real Chinanet with up-
dated routes

Figure 9: Goal: Remove 4 flows from Node 8 (Chinanet)

(a) RL achieved metrics (b) RL training log

Figure 10: RL for different evasion goals (Chinanet)

flows are changed based on the deceptive topology and no longer
go through Node 8. Instead, as shown in Figure 9(c), they all go
through Node 39. Figure 10 shows the details of the RL algorithm
results and the ERM for five different goals for evading Node 8.
When the flow coverage is smaller than our flow coverage upper
bound, we grant a reward of 1. Otherwise, the reward is -1.

Figure 10 shows the RL results and corresponding ERM during
the training of five different flow coverage goals. We successfully
divert up to 17 flows away from being monitored at Node 8 by
computing a deceptive topology with the same degree sequence
and a similarity score larger than 0.8 when compared with the real
topology. Figure 10(a) shows that the graph similarity generally
decreases with the decreased expected flow coverage upper bound
which means more changes are required to drive more flows away
from beingmonitored. Figure 10(b) shows that the ERM is higher for
easier training goals, indicating fewer actions per episode. Although
the ERM values never converge, our goal is a one-time solution
rather than model convergence. An ERM greater than -10 suggests
that the RL has successfully found a solution.
Discussion. The RL-based poisonous topology computation is scal-
able because it computes the deceptive topology offline and infre-
quently to maintain stealth. We do not need a stable agent returning
a solution with real-time flows as input. Instead, we observe and
select representative flows as input for the RL training. During the
training, any reward greater than the minimum ERM means a de-
ceptive topology meeting our goal has been captured. Moreover,
the topology only has hundreds of nodes, and changes should cor-
respond to a small segment (e.g. around the eavesdropping node)
of the large production networks.

To validate the RL acceleration of action priors technique in
Section 6.1, we also used a 2-switch action to train the model to
evade monitoring on the Chinanet topology to compare it with the
node reallocation. In this case, ERM remains -10 for all 50,000 steps
even with the simplest goal of driving one flow away from Node 8.
Intuitively, that is because a single 2-switch action cannot achieve
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the goal of evading a node on the mesh-like Chinanet topology
and the exploration space is huge

(66
2
)10. On the other hand, the

node reallocation action returns a successful result quickly because
very few node reallocations are necessary on the cyclic Chinanet
topology to change the length of some paths leading to driving
traffic away from a node.

7.5 Evading Existing Detection

(D.7) Monitor-based detection is the only detection relevant toMar-
ionette. Among all the systems listed in (D.7), only the code of
PicoSDN has been made available. The other types of defenses de-
scribed in the paper focus on characteristics of the network that
are not altered by Marionette, so they cannot detect it by de-
sign. These characteristics include degree sequence, LLDP packet
integrity, information integrity, and traffic routing integrity. Note
that because there are defenses (D.3-5) that measure degree se-
quence, one of the core components of Marionette is to ensure
the degree sequence remains unchanged. (D.8) Voting-based detec-
tion can address spoof-based attacks and suspicious activity involv-
ing multiple entities with respect to decision-making (e.g. reactive
forwarding decisions among controllers), but the Marionette
does not spoof; it unilaterally inserts malicious flow entries with
no other controllers involved to evaluate its behavior.

We have comprehensively analyzed the existing related defenses
(Table 2) and their ineffectiveness againstMarionette (Table 3).
We provide an in-depth evaluation of PicoSDN [67]. PicoSDN [67]
is a provenance-informed detection system that analyzes network
event logs and uses topology information to enable packet tracing
on the data plane, which in turn allows the construction of causal
relationships between control and data plane models. This approach
enables precise identification of the roots of some attacks.

The GitHub repository of PicoSDN [15] does not provide any
algorithm implementation to build the provenance graph, but only
the classes and methods to operate on a provenance graph (con-
firmed with the author). Thus we manually construct a snippet of
the provenance graphs of fabricating link 𝐴2→ 1𝐵 in Figure 1 and
the consequent gap patching for 𝐻1 → 𝐻2 traffic [20], following
the PicoSDN algorithm [67].

PicoSDN fails to detect the topology poisoning attack of fab-
ricating link 𝐴2 → 1𝐵 caused by poisonous flow entries 𝑓1, 𝑓2 of
Marionette because it overlooks that flow entries can attack the
topology discovery result. Whenever the topology is changed, ei-
ther legitimately or through aMarionette attack, PicoSDN starts
a new epoch to construct a provenance graph independently [Al-
gorithm 1(line 1-2) [67]]. In Epoch 1, Marionette attacks the
topology view based on real topology. As a result of the poisonous
flow entries, PicoSDN starts Epoch 2 due to the changed topology.

PicoSDN fails to detect the gap patching flow entries 𝑓3 because
it fails to recognize that Switch 𝐶 is between Switch 𝐴 and Switch
𝐵 due to the undetected poisoned topology. When traffic starts
from 𝐻1 to 𝐻2, PicoSDN constructs a data plane model based on
the deceptive link of 𝐴1→ 1𝐵 so it links Packet-Out 𝑝2 at 𝐴 with
Packet-In 𝑝5 at 𝐵 [Algorithm 1(line 7-10) [67]] which misses Packet-
In 𝑝3 and Packet-Out 𝑝4 at 𝐶 in the gap 12. Consequently, the gap

12The controller floods the 𝑝4 due to not knowing a path to forward it on the altered
topology, so 𝐵 can still receive 𝑝5 .

patching flow entry 𝑓3, set to prevent unnecessary flooding of reac-
tive forwarding, is not linked to the traffic from 𝐻1 to 𝐻2, evading
the anomaly detection successfully. We omit the Reactive Forward-
ing on 𝐸 which is in the same pattern as Reactive Forwarding on
𝐵. To conclude, the causal analysis by PicoSDN based on its fine-
grained provenance graph fails to detectMarionette.
Discussion. PicoSDN and existing related defenses overlook the
vulnerability of the SDN topology discovery process that certain
flow entries can impact the link discovery outcome. The detection
of this attack is impossible without monitoring flow rule conflicts
against table-miss/LLDP flow entries, which has not been studied.
Failing to detect the control plane topology poisoning is trouble-
some. A direct consequence is that the gap patching flow entries
also evade PicoSDN’s detection because causal analysis based on a
false topology fails to link the gap patching flow entries with the
flows that these gap patching flow entries are patching.

8 Discussion

Defending againstMarionette: Detecting aMarionette attack
involves recognizing that flow entries intended for traffic forward-
ing can fabricate links. Therefore, monitoring flow rule conflicts on
table-miss/LLDP flow entries becomes crucial. More importantly,
the discovery protocol should be included in the OpenFlow protocol
so that it can be regulated and implemented to a set of standards.

Monitoring-based detection is an option to detectMarionette’s
attack if the attack signature is known. However, augmenting a
monitor on the control plane is cumbersome and the monitoring-
based detection can only detect the attack, not defend it. It is more
effective to make slight modifications to the discovery packets or
discovery process to secure the link discovery result.

According to the OpenFlow protocol, if a packet with an invalid
TTL is received at a switch, this switch must drop the packet or
send it to the controller. A naive defense against Marionette
is to make TTL=1 for the discovery packet to force the switch to
send it back to the controller instead of allowing it to be forwarded.
However, this method is not robust for two reasons: (1) the TTL im-
plementation on OpenFlow switches may vary; we found that the
OpenVSwitch in Mininet will drop the packet with an invalid TTL
only when it has a corresponding flow entry that has an action of
decreasing the TTL (dec_nw_ttl), otherwise, this packet will still
be forwarded in Mininet environment. The process of confirming
TTL==0 on dec_ttl action is specified in the Open vSwitch Man-
ual [24]. As a result, this process may also apply to some physical
OpenFlow switches because white box OpenFlow switches are just
x86 machines running OpenVSwitch with some variants. For exam-
ple, the OpenFlow switches with the PICOS system by Pica8 have
a default dec_ttl action but it can be overwritten by ECMP select
group flow or set-l3-egress-keep-fields [70]. They also de-
pend on flow entries with the action of to_controller (reason =
invalid_ttl) to send the invalid-TTL packet to the controller [71].
All of the above can be manipulated byMarionette. (2)Mar-
ionette can set flow entries to adjust the TTL (set_nw_ttl) to
make the discovery packet’s TTL valid again.

Although the LLDP has been widely used by SDN to discover
links, the LLDP packet is not designed for SDN but for the tra-
ditional layer 2 networks. As a result, many fields of the LLDP
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payload are redundant and expose vulnerabilities. Our patching
plan is to let OpenDaylight randomize the ether-src, ether-dst,
and ether-type of the discovery packets each time they are sent.
Thus, there will be no way for a flow entry to match these dis-
covery packets, guaranteeing that they are a miss and will be sent
back to the controller due to the default table-miss flow entry. This
method brings complexity to the controllers because the controller
needs to maintain and update a table of matching the randomized
ether-src with the real ether-src to know the source of the re-
ceived discovery packet. The discovery packet’s destination can be
known from the packet-inmessage without any changes. Because
the table needs to be updated with the frequency of the topology
discovery process, maintaining its data consistency is nontrivial.
Limitations: In a single-controller setting,Marionette may need
to frequently query the SDN flow table to patch the gaps for long-
lasting flows, potentially raising suspicion. However, in a controller
cluster setup, all controllers get flow table update notifications,
eliminating the need for querying the flow table. Moreover, hit rate
statistics on original flow entries will not be kept consistent when
it is mandatory to use an LLDP signature field (e.g. ether-src)
combined with in-port to distinguish LLDP packets from different
sources to fabricate links precisely.
Ethical disclosure and open-sourcing: We have gone through an eth-
ical disclosure with the OpenDaylight maintainers, who acknowl-
edged the vulnerability and CVE-2024-37018 has been assigned. We
will patch this vulnerability and contribute to the OpenDaylight
source code. We have published the source code with documenta-
tion to reproduce our attack work [19].

9 Conclusion

Wedescribe a new SDN link fabrication attack that is global, stealthy,
and persistent. Launched from the control plane, a single compro-
mised controller or a malicious application can manipulate all other
controllers in a cluster into learning a poisoned topology by influ-
encing the paths of link layer discovery packets. Link fabrication
attacks can route traffic in nefarious ways, to eavesdrop on a set of
devices, or avoid a network monitoring device.

To scale the attack to large networks, we present a framework
based on reinforcement learning calledMarionette, which, given
the network topology, and an attacker goal, can automatically gen-
erate the set of poisonous OpenFlow flow table entries required to
launch the attack. Results show that our approach can successfully
attack 9 discovery protocols, and 5 controllers we tested, includ-
ing controller clusters. Our fabricated links also go undetected by
current state-of-the-art defenses.
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